AUSTRA LIAN ASSOCIATION OF
LIVE STEAMERS

CODE OF PRACTICE
STANDARDS FOR INTEROPERABILITY AND SAFETY OF MINIATURE RAILWAYS, ROAD VEHICLES AND PLANT

STANDARDS
Document control
This document consists of the following sections with the version dates shown.
Sections 1 to 12 dated: 3 July 2014
This document consists of 27 pages (including cover).
This version is dated 3 July 2014

Authoring, Consultation and Approval
This document was produced by the Australian Live Steamers Safety Committee, a subcommittee of the Australian Association of Live Steamers Limited ABN 81 107 882 404 (AALS) For Registered Office refer to the AALS Reference Document.

Any feedback is to be forwarded to:
Secretary
Australian Association of Live Steamers Ltd.
Contact details are available on the AALS website. www.aals.asn.au

About this code
This Code of Practice has been compiled by the Australian Association of Live Steamers for use by Member Societies so that a minimum standard of competency can be achieved by their Society Members.

By adopting the requirements and procedures outlined in this code the Association and its Member Societies recognise their obligation to provide a safe environment for visiting public and members alike which will be engendered at the many operating locations throughout Australia.

This Code of Practice for the Standards for Interoperability and Safety of Miniature Railways, Road Vehicles and Plant was revised and re-formatted in 2009 as part of the general revision of the Code of Practice, to reflect changes made at the April 2009 convention and suggestions made through a formal process of consultation to make the document more user-friendly and comprehensive.

Distribution and change
The AALS maintains the master for this document and publishes the current version on the AALS website www.aals.asn.au

Any changes to the content of this publication will also update this control page. The control page defines the current version of this document. Changes to this document are approved by vote by the member Society’s of the Association in accordance with the Association’s Constitution and Standing Orders.

Disclaimer
This document has been produced for use by the member Societies of the Australian Association of Live Steamers. Use by others for any purpose is at the user’s risk.
Contents

1. DEFINITIONS .. 5
2. GENERAL .. 5
3. CONTEXT ... 5
4. MINIMUM BRAKING REQUIREMENTS FOR MINIATURE PASSENGER CARRYING RAILWAYS 6
 4.1 Locomotives.. 6
 4.2 Carriages ... 6
 4.3 Guard’s Vans or Vehicles ... 6
5. LOCOMOTIVES .. 7
 5.1 General.. 7
 5.2 Steam ... 7
 5.3 Non-Steam ... 7
6. PUBLIC PASSENGER CARRYING AND DRIVING CARRIAGES .. 8
 6.1 General.. 8
 6.2 Couplings.. 8
 6.3 Common requirements for carriages that are used for the carrying of public passengers 8
 6.4 127mm (5”) Gauge Straddle Type Public Passenger Carriages ... 9
 6.5 184mm (7¼”) Gauge Carriages that are used for the carrying of public passengers 9
 6.6 Driving Trucks ... 9
7. SCALE TYPE ROLLING STOCK (NON RIDING) ... 10
8. INFRASTRUCTURE ... 10
 8.1 Minimum Track Gauge .. 10
 8.2 Portable Miniature Railways .. 10
 8.3 Tracks, Rails and Lineside Fixtures .. 10
 8.4 Compressed Air Services. .. 11
9. RECOMMENDED TRACK AND WHEEL PROFILE STANDARDS. 12
 9.1 AALS 5” (127mm) Gauge .. 12
 9.2 5 Inch (127mm) Gauge Fine Scale ... 14
 9.3 AALS 7¼” (184.15mm) Gauge ... 15
10. COUPLINGS AND INTER-VEHICLE CONNECTIONS ... 17
 10.1 General.. 17
10.2 Materials ... 17
10.3 Type A Coupling - For models to a total mass of 25kg (55 lbs) ... 17
10.4 Type B Coupling - For models to a total mass of 120kg (264 lbs) .. 18
10.5 Type C Coupling - For models of total mass in excess of 120kg (264lb) ... 18
10.6 Type B to Type C Adapter Coupling ... 19
10.7 Automatic Couplings ... 19
10.8 Coupling Height .. 20
10.9 Coupling Length ... 20
10.10 Inter-Vehicle Connections ... 20
10.11 Brake fittings .. 21
10.12 Coupler Pockets and Safety Chains ... 22
11. ALTERNATIVE COUPLINGS .. 23
11.1 Alternative Type B Coupling - 1 ... 23
11.2 Alternative Type B Coupling - 2 ... 24
11.3 Chopper Coupling ... 26
12. AMENDMENTS TO THIS CODE .. 27
1. DEFINITIONS

1.1 For definitions see the AALS Code of Practice:- Operation of Miniature Railways, Road Vehicles and Plant.

2. GENERAL

2.1 This Code of Practice is intended to cover minimum safe operating requirements of affiliated societies operating miniature railways of gauges between 32mm (1¼") and 204mm (8"), operating at a speed not exceeding 20 km/h, road vehicles and plant, as non-commercial hobby operations.

2.2 This code is in accordance with the Aims and Objects as detailed in the Australian Association of Live Steamers Constitution.

2.3 With changes to Amusement Device Legislation in various States of the Commonwealth and the trend for self regulation by industry and business in general the need for a high standard of competency in operators is required.

3. CONTEXT

3.1 This Code of Practice for Standards for Interoperability and Safety of Miniature Railways, Road Vehicles and Plant should be read in conjunction with:

3.1.1 AALS Code of Practice:- Operation of Miniature Railways, Road Vehicles and Plant;

3.1.2 AALS Code of Practice:- Training of Operators and Attendants of Miniature Railways, Road Vehicles and Plant; and

3.1.3 AS 3533 - 2009 Amusement Rides and Devices.

3.1.4 AALS Constitution.

3.1.5 AALS Standing Orders.
4. **MINIMUM BRAKING REQUIREMENTS FOR MINIATURE PASSENGER CARRYING RAILWAYS**

4.1 **Locomotives**

4.1.1 All locomotives, including whether the Operator rides on, in, or behind the locomotive on a suitable driving truck or driving carriage, shall be fitted with an effective braking system.

4.1.2 The braking system shall be capable of stopping a light engine to the satisfaction of the owner/operators Society’s Safety Officer/Committee.

4.1.3 All locomotives hauling three or more public passenger carriages shall be fitted with an effective braking system, capable of operating the carriage brakes.

4.1.4 Mechanical brakes should be capable of being retained on.

4.2 **Carriages**

4.2.1 Effective brakes shall be fitted to trains utilised for public passenger carrying.

4.2.2 Trains of three or more carriages shall have at least have one in three (or part thereof) carriages braked, either operated from the locomotive or independent of the locomotive.

4.2.3 Driving trucks or guards vans which carry passengers shall count as a carriage.

4.2.4 A carriage braking system may be independent of the locomotive braking system but shall be capable of being applied by the operator (e.g. a lineside charged air brake system with the brake valve on the driving carriage).

4.2.5 Brakes are not required for a two carriage train, however steam or vacuum operated brakes could be extended from the locomotive brake.

4.3 **Guard’s Vans or Vehicles**

4.3.1 Guards vans or vehicles are required for trains of three carriages or more.

4.3.2 An effective mechanical brake on a minimum of four wheels should be provided.

4.3.3 Mechanical brakes should be capable of being retained on.

4.3.4 Where trains are fitted with a continuous brake system the brakes should also be capable of being operated by the guard.
5. LOCOMOTIVES

5.1 General

5.1.1 Couplings between engine and Driving truck or carriage for both ground level and elevated operations shall be a solid bar type attached to a fork or clevis with a positive locked or screwed pin as defined in this Code of Practice.

5.1.2 Couplings between engine and tender shall:

5.1.2.1 Be at least equal in strength to the coupling between engine and driving truck.

5.1.2.2 Be safety checked, such period not to exceed two (2) years.

5.1.3 Automatic couplings shall not be used between the locomotive and the train unless the driver rides on or in the Locomotive.

5.1.4 Every locomotive shall be fitted with an audible warning device.

5.2 Steam

5.2.1 Every steam locomotive shall:

5.2.1.1 Have a current boiler certificate issued under the relevant AMBSC Code or State Statutory Authority requirements before operating.

5.2.1.2 Be operated in a manner so as not to emit sparks that cause damage or personal injury.

5.2.1.3 Discharge steam or condensate from blow down, steam traps or any other source to a place where there is no risk of injury to persons.

5.2.1.4 In the case of liquid fuel fired or gas fired boilers, have adequate safeguards to deflect fuel spillage away from dangerous areas.

5.3 Non-Steam

5.3.1 Every non-steam Locomotive shall:

5.3.1.1 Have a cut out device, which when operated, will render the Locomotive inoperable when unattended.

5.3.1.2 Have exhaust fumes directed away from the Operator and persons riding on the Train.

5.3.1.3 Have hot exhaust pipes or other areas likely to cause burns to persons adequately protected by lagging or shielding.

5.3.1.4 In the case of liquid fuelled internal combustion engines, have adequate precautions to deflect spillage away from dangerous areas.
6. PUBLIC PASSENGER CARRYING AND DRIVING CARRIAGES

6.1 General

6.1.1 Attention should be paid in the design stage to the centre of gravity of carriages and the centre of gravity shall be kept as low as possible.

6.1.2 Carriages shall be enclosed where necessary to prevent passengers contacting dangerous parts of the mechanism.

6.2 Couplings

6.2.1 Carriages utilised for public passenger carrying shall:

 6.2.1.1 Be fitted with adequate strength couplings.

 6.2.1.2 Be fitted with safety chains where practical in larger gauges.

 6.2.1.3 Be coupled together using a solid bar type coupling where sprung draw gear is utilised.

 6.2.2 Screw link couplings, correctly buffered, shall be permitted but loose link couplings shall not be used.

 6.2.3 Automatic type couplings shall be permitted on ground level tracks only.

6.3 Common requirements for carriages that are used for the carrying of public passengers

6.3.1 Carriages that are used for the carrying of public passengers shall:

 6.3.1.1 Be a bogie type.

 6.3.1.2 Incorporate end boards to prevent passengers riding across two carriages or slipping endways off the car.

 6.3.1.3 Incorporate full length footboards on straddle type cars. Such footboards must not be of a width which may increase the risk of overturning or provide some other hazard, and if such footboards incorporate up-turned edges, such up-turned edges must not exceed 100mm in height.

 6.3.1.4 Have full length guards provided to prevent passenger contact with track or running equipment.

 6.3.1.5 Have a place at each end on to which a passenger can hold.

 6.3.1.6 Incorporate a suspension arrangement that ensures the vertical forces act within the wheel gauge.

 6.3.1.7 Have a minimum gauge of 127mm (5 inch).

 6.3.1.8 Recognise and allow for the potential for overturning given the gauge, mass and width of the vehicle.

 6.3.1.9 Be consistent with the track structure (including loading) and structure gauge of the railway.
6.3.1.10 Incorporate buffers or other protection to prevent the potential jamming of passengers’ hands in the event of a derailment.

6.3.1.11 Have no places which could cause the trapping of a passenger's hands or limbs.

6.4 **127mm (5") Gauge Straddle Type Public Passenger Carriages**

6.4.1 Straddle type Carriages that are used for the carrying of public passengers utilised on 127mm (5") gauge railways should have the following characteristics:

6.4.1.1 Length 1520-1830mm (5' - 6') long,
6.4.1.2 Seat boards 250-300mm (10"-12") wide
6.4.1.3 Seat Height 180-250mm (7"-10") above footboards (ground level rolling stock)
6.4.1.4 Foot boards 100 -115mm (4" - 4½") wide, seat 5 adults maximum
6.4.1.5 End boards 100mm (4") high minimum above the seat
6.4.1.6 Hand holds approximately 50-150mm (2"-6") above the seat

6.5 **184mm (7¼") Gauge Carriages that are used for the carrying of public passengers**

6.5.1 Carriages that are used for the carrying of public passengers whether straddle type or sit-in type, utilised on 184mm (7¼") gauge railways should have the following characteristics:

6.5.1.1 Length 1830mm-2500mm (6'-8') long bogie type to seat 4 to 7 Adults.
6.5.1.1.1 Notwithstanding the provisions of clause 6.5.1.1 the length of 7¼" gauge carriages may be extended beyond the 2.5m to 4.5m when the design provides adequately for such length and additional loading and includes design features which ensure a low centre of gravity. Such features may include but not be limited to drop centres, underfloor location of air tanks, and suitably weighted and strengthened bogies.

6.5.1.2 Seat boards 250 -300mm (10" - 12")
6.5.1.3 Seat Height 250-300mm (10"-12") above foot boards.
6.5.1.4 Foot board width 100 - 150mm (4" - 6")
6.5.1.5 End Boards 100mm (4") high above the seat
6.5.1.6 Hand holds approx 50mm -150mm (2"-6") above the seat

6.6 **Driving Trucks**

6.6.1 Driving trucks shall be fitted with effective couplings.

6.6.2 The locomotive and/or driving truck shall be fitted with an effective brake.
7. SCALE TYPE ROLLING STOCK (NON RIDING)

7.1 Scale type rolling stock (non-riding) of 7¼ inch gauge or larger and of significant mass and used concurrently on the same track as public running shall:

7.1.1.1 Be fitted with effective brakes.

7.1.1.2 Comply with the same requirements as if the vehicles were passenger carrying rolling stock.

7.2 Prototypical couplings may be used on scale type (non-riding) rolling stock.

8. INFRASTRUCTURE

8.1 Minimum Track Gauge

8.1.1 The minimum rail gauge for Public passenger carrying operations should be 127mm (5”) gauge for elevated and ground level railways, excepting Driving trucks.

8.1.2 Where elevated or ground level tracks of a smaller gauge than 127mm (5”) gauge only are installed they should operate at an appropriate speed as required by the Code of Practice: - Operation of Miniature Railways, Road Vehicles and Plant.

8.2 Portable Miniature Railways

8.2.1 Prior to operation on each day, the portable miniature railway shall be inspected for compliance with this Code and the Code of Practice: - Operation of Miniature Railways, Road Vehicles and Plant.

8.2.2 Adequate precautions shall be taken to ensure the safety of the public.

8.2.3 Where a portable miniature railway, on being set up requires to be levelled, suitable stable packing shall be used.

8.3 Tracks, Rails and Lineside Fixtures

8.3.1 Railways of 184mm (7¼”), 127mm (5”), 89mm (3½”), and 63.5mm (2½”) gauge shall conform to the relevant A.A.L.S. Standards as defined in this Code of Practice.

8.3.2 The track layout and all associated equipment and facilities shall be designed and engineered to provide safety in operation of the system.

8.3.3 Consideration shall be given in the design of the system to maximum speed, maximum loadings and where applicable, bridges and their approaches, crossings, stations or disembarkation areas, and communications for multi-train operations.

8.3.4 Tracks shall be constructed to provide a firm base to support and steer the train.

8.3.5 Ground level tracks shall be so constructed and ballasted as to maintain accuracy of gauge, alignment and superelevation.

8.3.6 Elevated tracks shall be secured to supports so as to maintain accuracy of gauge and alignment.
8.3.7 Rails shall be laid on and secured to sleepers or firm structural systems mounted on ballast or engineered foundations.

8.3.8 Rails shall be joined at their ends by welding, or by fishplates or by other acceptable bolting methods.

8.3.9 Sleepers, where used, shall be laid on flat surfaces capable of providing adequate bearing capacities for the imposed loading and to achieve rail height and alignment on permanent installations.

8.3.10 A change of direction in the track shall not impede positive traction for the train.

8.3.10.1 A transition curve of adequate radius leading into and out of such change of direction may be necessary.

8.3.11 The design of rail points should consider the following features:

8.3.11.1 The moving rail components to be securely supported.

8.3.11.2 The moving point tips or rails to be connected by a system to maintain gauge.

8.3.11.3 The switch stand or actuating mechanism to be fixed in relation to the main rail.

8.3.11.4 An actuating mechanism, other than that for catch points, to hold the points as set.

8.3.11.5 Provision for locking the actuating mechanism.

8.3.12 Where rail tracks cross bridges, a check rail or other positive means to prevent derailment of the train shall be provided both during the approach to and on the bridge.

8.3.13 The length of the check rail or other derailment prevention means shall be related to the operating speed and the potential of the train to overturn should derailment occur.

8.3.14 Line side fixtures, fencing, electrical wiring, water services, buildings and fittings shall comply with relevant Federal, State or Local ordinances.

8.4 Compressed Air Services.

8.4.1 Fittings for compressed air to provide assisted draft for steaming up should be Ryco style 200 / Jamec 900 ¼ inch series with the female coupling provided as part of the fixtures.

8.4.2 Compressed air hoses should be fitted with the nipples, and where necessary utilise ¼ inch BSP unions.
9. RECOMMENDED TRACK AND WHEEL PROFILE STANDARDS.

9.1 AALS 5" (127mm) Gauge

Wheel Profile

Wheel-Dia. 1.6mm
5mm
1.8mm radius
0~8°
4mm
12~20°

Wheel Back-Back 116
Check rail
Back-Back 115

Wheel Profile

Wheel-Rail Fit

Gauge widens to 129mm where needed

Gauge 127mm (5" nominal)

Back-back check rails 115mm

Check gauge 122mm

Footboard Clearance
0.5~1.0mm
Rail head radius

6.0mm
>15mm

0.5~1.0mm

Footboard Clearance
>15mm

>10mm

Running Gear Clearance (RC)

6mm

Flangeway Depth

Coupler height above rail 82.5mm
Coupler pin 6.35mm dia (min)
Drawbar cross-section 16 x 5 mm (min)
Running gear clearance >10mm above rail

5" GAUGE
9.1 (continued)

Standard Track Dimensions:

<table>
<thead>
<tr>
<th></th>
<th>Imperial (inches)</th>
<th>Metric (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track Gauge (Nominal) (G)</td>
<td>5</td>
<td>127</td>
</tr>
<tr>
<td>Track Gauge (Actual)</td>
<td>5</td>
<td>127</td>
</tr>
<tr>
<td>Check Gauge (CG) Note 1</td>
<td>4.937</td>
<td>122</td>
</tr>
<tr>
<td>Track Gauge Widening (GW) (maximum, where needed)</td>
<td>5.094</td>
<td>129</td>
</tr>
<tr>
<td>Check Rail Spacing (CR)</td>
<td>4.531</td>
<td>115</td>
</tr>
<tr>
<td>Width of Flangeway (W)</td>
<td>0.235</td>
<td>6.0</td>
</tr>
<tr>
<td>Gauge Clearance (G-BB-2*FT)</td>
<td>0.125</td>
<td>3.0</td>
</tr>
<tr>
<td>Railhead Edge Radius</td>
<td>0.02-0.04</td>
<td>0.5-1.0</td>
</tr>
<tr>
<td>Depth of Flangeway (minimum)</td>
<td>0.25</td>
<td>6.0</td>
</tr>
</tbody>
</table>

Standard Wheel Dimensions:

<table>
<thead>
<tr>
<th></th>
<th>Imperial (inches)</th>
<th>Metric (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back to Back (BB)</td>
<td>4.563</td>
<td>116.0</td>
</tr>
<tr>
<td>Flange Depth</td>
<td>0.187</td>
<td>5.0</td>
</tr>
<tr>
<td>Flange Thickness (FT) Notes 2,3</td>
<td>0.156</td>
<td>4.0</td>
</tr>
<tr>
<td>Flange Angle - Front</td>
<td>12~20°</td>
<td>12~20°</td>
</tr>
<tr>
<td>Flange Angle - Rear</td>
<td>0~8°</td>
<td>0~8°</td>
</tr>
<tr>
<td>Wheel Check (BB+FT)</td>
<td>4.718</td>
<td>120.0</td>
</tr>
<tr>
<td>Wheel Root Radius</td>
<td>0.07</td>
<td>1.8</td>
</tr>
<tr>
<td>Wheel Tyre Taper</td>
<td>1.5~2°</td>
<td>1.5~2°</td>
</tr>
<tr>
<td>Wheel Tyre Width (minimum) Fine scale</td>
<td>0.55</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Normal (Preferred)</td>
<td>0.63</td>
</tr>
<tr>
<td>Flange Tip Profile</td>
<td></td>
<td>Half round</td>
</tr>
</tbody>
</table>

Rolling Stock Dimensions:

<table>
<thead>
<tr>
<th></th>
<th>Imperial (inches)</th>
<th>Metric (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupler Height (above rail)</td>
<td>3 1/4</td>
<td>82.5</td>
</tr>
<tr>
<td>Drawbar X-section (minimum)</td>
<td>5/8 x 3/16</td>
<td>16 x 5</td>
</tr>
<tr>
<td>Coupler Pin Diameter (minimum)</td>
<td>0.25 (1/4)</td>
<td>6.35</td>
</tr>
<tr>
<td>Running Gauge Clearance (RC) (minimum)</td>
<td>3/8</td>
<td>10</td>
</tr>
<tr>
<td>Footboard Clearance (minimum)</td>
<td>5/8</td>
<td>15</td>
</tr>
</tbody>
</table>

Note 1: Care should be taken where gauge widening is used with checkrails. Where there is gauge widening, the term CR is reduced. CR=CG-W-GW. Irrespective of GW, CG (Check Gauge) is always 4 13/16 inch (122.4mm)

Note 2: For intermediate driving wheels requiring thin flanges, the width shall be 1/6 inch (3.2mm). The reduction of 1/32 inch (0.8mm) to be effected from the front of the flange.

Note 3: For intermediate driving wheels where flanges are not required the tread diameter shall be machined parallel for the total width of the flange and flange to tread radius viz. 5/32 + 1/16”=7/32” (4+1.6=5.6mm).
9.2 5 Inch (127mm) Gauge Fine Scale

Standard Wheel Dimensions:

<table>
<thead>
<tr>
<th></th>
<th>Imperial (inches)</th>
<th>Metric (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back to Back (BB)</td>
<td>4.688</td>
<td>119.0</td>
</tr>
<tr>
<td>Flange Depth</td>
<td>0.140</td>
<td>3.6</td>
</tr>
<tr>
<td>Flange Thickness (FT)</td>
<td>0.106</td>
<td>2.7</td>
</tr>
<tr>
<td>Flange Angle - Front</td>
<td>12~20°</td>
<td>12~20°</td>
</tr>
<tr>
<td>Flange Angle - Rear</td>
<td>8°</td>
<td>8°</td>
</tr>
<tr>
<td>Wheel Check (BB+FT)</td>
<td>4.794</td>
<td>121.7</td>
</tr>
<tr>
<td>Wheel Root Radius</td>
<td>0.07</td>
<td>1.8</td>
</tr>
<tr>
<td>Wheel Tyre Taper</td>
<td>1.5~2°</td>
<td>1.5~2°</td>
</tr>
<tr>
<td>Wheel Tyre Width (minimum)</td>
<td>0.535</td>
<td>13.6</td>
</tr>
<tr>
<td>Flange Tip Profile</td>
<td></td>
<td>Half round</td>
</tr>
</tbody>
</table>

Coupler height above rail 3¼" 82.5mm

5" Fine Scale
9.3 AALS 7¼" (184.15mm) Gauge

Wheel Profile

Wheel-Dia.
2mm
6mm
3mm radius
8mm (Wheel diameter point)
5mm
20°

Wheel-Rail Fit

Wheel Back-Back 170
45° x 1mm
3°

Check rail Back-Back 167

2.5
1.5
9

Gauge 185

Wheels Back-Back 170mm
Wheel check 175mm

5mm
[188mm on curves <20m radius]

Gauge 185mm (7.25° nominal)

Back-back check rails 167mm
Check gauge 176mm

9.0mm
1.0mm
Rail head radius

Footboard Clearance

>25mm
>25mm
>16mm
>8mm

Flangeway Depth

Running gear clearance

Practical tolerance +/-0.5mm

Coupler height above rail 125mm
Coupler pin 10mm dia (min)
Drawbar cross-section 25 x 8 mm (min)
Running gear clearance >16mm above rail

7¼" GAUGE
9.3 (continued)

Standard Track Dimensions:

<table>
<thead>
<tr>
<th></th>
<th>Imperial (inches)</th>
<th>Metric (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Track Gauge (G)(Nominal)</td>
<td>7.25"</td>
<td>184.15</td>
</tr>
<tr>
<td>Track Gauge (Actual)</td>
<td>7.28"</td>
<td>185.00</td>
</tr>
<tr>
<td>Check Gauge (CG)</td>
<td>6.83"</td>
<td>176.00</td>
</tr>
<tr>
<td>Check Rail Spacing (CR)</td>
<td>6.57"</td>
<td>167.00</td>
</tr>
<tr>
<td>Width of Flangeway (W)</td>
<td>0.35"</td>
<td>9.00</td>
</tr>
<tr>
<td>Gauge Clearance</td>
<td>0.20"</td>
<td>5.00</td>
</tr>
<tr>
<td>Gauge Widening (GW) (Curves<20m radius)</td>
<td>0.12"</td>
<td>3.00</td>
</tr>
<tr>
<td>Railhead Edge Radius</td>
<td>0.04"</td>
<td>1.00</td>
</tr>
<tr>
<td>Depth of Flangeway (minimum)</td>
<td>0.32"</td>
<td>8.00</td>
</tr>
<tr>
<td>Wheel Check Clearance to back of wheel</td>
<td>0.06"</td>
<td>1.50</td>
</tr>
</tbody>
</table>

Practical tolerance: ±0.5mm

Standard Wheel Dimensions:

<table>
<thead>
<tr>
<th></th>
<th>Imperial</th>
<th>Metric (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Back to Back (BB)</td>
<td>6.69"</td>
<td>170.00</td>
</tr>
<tr>
<td>Flange Depth</td>
<td>0.24"</td>
<td>6.00</td>
</tr>
<tr>
<td>Flange Thickness (FT)</td>
<td>0.20"</td>
<td>5.00</td>
</tr>
<tr>
<td>Flange Angle - Front</td>
<td>20°</td>
<td>20°</td>
</tr>
<tr>
<td>Flange Angle - Rear</td>
<td>0 - 8°</td>
<td>0 - 8°</td>
</tr>
<tr>
<td>Wheel Check (BB+FT)</td>
<td>6.89"</td>
<td>175.00</td>
</tr>
<tr>
<td>Wheel Root Radius</td>
<td>0.08" - 0.12"</td>
<td>2.00 - 3.00</td>
</tr>
<tr>
<td>Wheel Tyre Taper</td>
<td>3°</td>
<td>3°</td>
</tr>
<tr>
<td>Wheel Tyre Width (minimum)</td>
<td>Fine scale</td>
<td>0.80" 20</td>
</tr>
<tr>
<td></td>
<td>Narrow gauge</td>
<td>0.98" 25</td>
</tr>
<tr>
<td>Flange Tip Profile</td>
<td>Half round</td>
<td>Practical tolerance: ±0.25mm</td>
</tr>
</tbody>
</table>

Rolling Stock Dimensions:

<table>
<thead>
<tr>
<th></th>
<th>Metric (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coupler Height (above rail)</td>
<td>125</td>
</tr>
<tr>
<td>Drawbar X-section (minimum)</td>
<td>25 x 8</td>
</tr>
<tr>
<td>Coupler Pin Diameter (minimum)</td>
<td>10</td>
</tr>
<tr>
<td>Running Gauge Clearance (RC) (minimum)</td>
<td>16</td>
</tr>
<tr>
<td>Footboard Clearance (minimum)</td>
<td>25</td>
</tr>
</tbody>
</table>
10. COUPLINGS AND INTER-VEHICLE CONNECTIONS

10.1 General

10.1.1 This Section describes the recommended Couplings for 63.5mm (2½”), 89mm (3½”), 127mm (5”) and 184mm (7¼”) gauge Locomotives.

10.1.2 It also provides recommended practice related to the location of Inter-Vehicle connections on Rolling Stock.

10.1.3 A selection of alternative Coupler types is contained in Section 11 of this Code of Practice.

10.2 Materials

10.2.1 Couplings shall be:

10.2.1.1 Manufactured from mild steel with a 250 MPa minimum yield strength.

10.2.1.2 Loaded to a maximum working tensile stress of 130 MPa.

10.3 Type A Coupling - For models to a total mass of 25kg (55 lbs)

10.3.1 Fitted between the locomotive and the driver.

10.3.2 Coupling Bar cross section: 12mm x 3mm.

10.3.3 Drawbar pin: 5mm (3/16”) diameter.

[Diagram of Type A Coupling]
10.4 Type B Coupling - For models to a total mass of 120kg (264 lbs)

10.4.1 Fitted between the locomotive and the driver.

10.4.2 Coupling Bar cross section: 16mm x 5mm.

10.4.3 Drawbar pin: 6 mm (or ¼") diameter.

Type B Coupling

10.5 Type C Coupling - For models of total mass in excess of 120kg (264lb)

10.5.1 For models in excess of 120kg, these are to be as specified by the Society’s Safety Committee or as for 184mm (7¼") gauge standards.

Type C Coupling
10.6 Type B to Type C Adapter Coupling

10.6.1 For coupling between 5" and 7¼" Rolling Stock.

Type B to Type C Adapter Coupling

10.7 Automatic Couplings

10.7.1 Automatic type couplings may also be used as an alternative for ground level passenger carriages.
10.8 Coupling Height

10.8.1 Coupler height is to be measured from the top of the railhead to the centre of the coupler bar.

10.8.2 Coupler heights applicable to Gauge and Scale are listed in the following table:

<table>
<thead>
<tr>
<th>Gauge</th>
<th>Scale</th>
<th>Coupler Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>5” (127mm)</td>
<td>1” and above</td>
<td>3¼” (+0” / -1/8 ”) 82.5mm (+0mm / -3mm)</td>
</tr>
<tr>
<td>7½” (184mm)</td>
<td>1½” to 2”</td>
<td>5” (+0” / - 3/16”) 127mm (+0mm / -5mm)</td>
</tr>
<tr>
<td>7¾” (184mm)</td>
<td>2” and above</td>
<td>6” (+0” / - 3/16”) 150mm (+0mm / -5mm)</td>
</tr>
</tbody>
</table>

10.9 Coupling Length

10.9.1 Coupler Bars shall be of sufficient length to allow a minimum of 50mm clearance between vehicle corners when negotiating a curve of 10m radius.

10.10 Inter-Vehicle Connections

10.10.1 This dimensions provided are for 7¼” gauge.

10.10.2 The principles can be applied to 3½” and 5” gauge using suitable scaling.

10.10.3 Coupler Bar retaining pins shall:

10.10.3.1 Preferably be secured to the coupler pocket, carriage buffer beam or carriage end using a suitable wire lanyard or small chain:

10.10.3.2 Be held in the coupler pocket using a suitable “R” Clip.

10.10.4 Alternatively, commercial “Wire Lock” or “Shaft Lock” Pins may be utilised as coupler bar retaining pins.

10.10.4.1 “Wire Lock” or “Shaft Lock” pins have a wire loop which is pulled over the pin end to lock it in place or to remove it.

10.10.5 Safety chains shall be long enough to be connected to an adjacent coupled carriage and shall preferably be welded to the coupler pocket.

10.10.6 Safety chain and brake hose lengths shall be chosen to suit coupler bar length.
10.11 Brake fittings

10.11.1 Brake fittings shall comply with the following standards:

<table>
<thead>
<tr>
<th>Item</th>
<th>Function</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stored Air</td>
<td>Ryco Part Number 201</td>
</tr>
<tr>
<td>2</td>
<td>Vacuum</td>
<td>Spigot 6mm diameter</td>
</tr>
<tr>
<td>3</td>
<td>Train Brake Air</td>
<td>JAMAC Part Number 310-M4 Barb 3ITS</td>
</tr>
</tbody>
</table>

10.11.2 Brake fittings shall be installed at the locations indicated in the following diagram:

Position of Air and Vacuum Brake Fittings
10.12 Coupler Pockets and Safety Chains

10.12.1 Coupler pockets and safety chains shall be installed as indicated in the following diagrams:

Coupler Pocket Location

- **Length to allow attachment to bogie centre**
- **Drill 10.0\(\phi\) all holes**
- **Divider for RHS 75x50 double pocket**

Safety Chain and Coupler Pocket Details

- **Coupler Pocket:** RHS 75x50
11. ALTERNATIVE COUPLINGS.

11.1 Alternative Type B Coupling - 1

1. 6mm diameter pins to be shouldered down and either riveted, welded or silver soldered to 12mm x 6mm bar.
2. "L" sufficient for washer, compression spring and 12mm movement when pushed from underneath.
11.2 Alternative Type B Coupling - 2

1. Machine away top and bottom thickness of tube.
2. Open sides to required width.
3. Silver solder, or weld, 3mm plates top and bottom.
ASSEMBLY

DRAFT GEAR SPRINGS & BOSS

Springs not shown

ASSEMBLY

SPRING HOUSING

1 off 16mm sq. BMS

SWIVEL PIN
1 off 10mm dia BMS

* Nom flush fit
Top & Bottom of body.

SPRING PIN
1 off 12mm dia BMS

Radius corners to suit coupling pocket tube for free-sliding fit.

Approx 16mm sq to suit tube.
11.3 Chopper Coupling

Chopper Couplings as used by Castledare Miniature Railways for 7¼" gauge.
12. AMENDMENTS TO THIS CODE

12.2 2011 – As adopted at the 2011 AGM; Sections 4.2.1 word ‘train’ substituted for ‘carriage’. Sections 6.3 – 6.5 amended to remove 3½” gauge public passenger carriages; common design goals included and general and typical dimensions provided to avoid prejudicing any specific design.

12.3 2012 – As adopted at the 2012 AGM; Section 6.5.1.1 amended and new section 6.5.1.1.1 added in regard to the length of passenger carriages.

12.4 2013 – As adopted at the 2013 AGM section 8.4.1 clarified air fittings.